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A THEORETICAL INVESTIGATION OF TURBULENT
BOUNDARY LAYER FLOW WITH HEAT TRANSFER
AT SUPERSONIC AND HYPERSONIC SPEEDS

Prepared by:

Jerome Persh

ABSTRACT: A theoretical investigation of compressible turbulent
boundary layer flow with and without steady state heat transfer
has been conducted. This investigation is based on a - .ple
physical model of the fiow suggested first by Prandtl and used
later by Donaldson, The physical model consists of a laminar
sublayer region with a linear velocity profile and an outer tur-
bulent portion with a power law velocity profile. Comparisons
betwenn theory and experiment demonstrate that the analysis
yields good results for compressible turbulent boundary layer
flow with and without steady state heat transfer.

U. 8. NAVAL ORDNANCE LABORATORY
WHITE OAK, MARYLAND
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This report contains the results of a theoretical ianvesti-
gatinn of compressible turbulent boundary layer flow with and
without steady state heat transfer, The gignificance of this
work is apparent when it is considered that although a great
deal of experimental and theoretical information exists for
supersonic turbulent boundary layers in the absence of heat
transfer, there are relatively few detailed investigations

in the supersonic and hypersonic spced ranges that include
the e¢ffects of heat transfer.

‘The work was jointly sponsored by the U. S. Naval Bureau of
Ordnance and the U. S, Air Force, and was performed under
Tasksi NOL-M98~133-1-55 and NOL-M9a-133-5-55, The author is
deeply indebted to Dr. R, E, Wilson and Dr. R. K. Lobb for
their guidance and continued interest during the course of
the investigation, and to Mrs., Leah Brown of the Applied
Mathematics Division, who carried out the computation of
the data contained in Table I,

JOBN T. HAYWARD
Captain, USN
Commander

H. H. KURZWEG, Chief

Aeroballistic Research Depariment
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SYMBOLS

Local skin friction cocfficient based on free-stream
conditions, 2 z"//oa, Uep 2

hMean skin friction coo!ficgent based on free-~gtroaxn
conditions, 2D

/%n'ka x
incompreasible local skin friction coefficient for
zero heat transfer based on free-stream conditioans

Incompressible mean skin friction coefficient for zero
heat transfer based on free-stream conditions

Drag force

Boundary layer shape parameter, 8*/0

Constant in mixing length law

Mixing length

Mach number

Sxponent in power law velocity profile representation
Ratio of totul shear stress to viscr:s shaar stress
Recovery factor

Reynolds numbex:

Local static temperature

Mean velocity component in x-direction

Velocity parameter, n/ur (based on wall conditions)
Friction velocity /;;Z;:

Axisl distance along surface

Distance perpendicular to surface

Wall distance parameter, YYr/y (based on wall condi-
tions)
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SYMBCLS (continued)

8 = Toial btoundary layer thickness 6
u
8¢ = Boundary layer displacement thickness, [1 Y A - dy
. folo
. &

o = Boundary layer momentum thickness, | pu 1l - u dy

fo Yoo Yo

(]
f& = Viscosity
J’ = Kinematic viscosity
,° = Density
Ziam. = faminar shear stress
ZTurb. = Turbulent shear stress
w w Exporent in viscosity-temperature relationship
Subscripts: }
e = Equilibrium wall temperature

4 L ~ Values a; the edge cf isminar sublayer '

T = Turbulent region

]
L]

Yalues based on wall conditions

= Values based on distancs from leading edge of plate

v—

= Valuns based on boundary layer thickness

Values based on boundary layer momentum thickness

8 @ O X
|

= Values based on free-stream conditions outside
houndary layer
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A THEORETICAL INVESTIGATION OF TURBULENT
BOUNDARY LAYER FLOW WITH HEAT TRANSTFER
AT SUPERSONIC AND HYPERSONIC SPEEDS

INTRODUCT ION

1. Despite a lack of experimental data, numcrous formulae
have teen developed for the variation of turiimlent skin
friction on a flat plate, with and without stecady state

heat transfer. The reports of Rubesin, Maydew, aund Varga
(refercnce a), and Chapman and Kester (reference 1:) include
good rcsumes of several theorctical trcatments of this proilem
All of the analyses reviewed in these references make use
of empirical constants which are drawn f{rom incompressible
experimental data. Recent experimental resulis (reference c¢)
have demonstrated that the empirical incompressible conslants
utilized are affected by heat transfer. Specifically, it
has becen found that the assumption that the edge of the
laminar suhlayer occurs at fixed values of the paramcters

uj, (or Y1, Ty is noet strictly va11d Experimental results
indicate that the value of “L does not only vary with heat
transfer, but to some extent with Reynolds number and Mach
number., It was felt, thereforec, that a theoraotical
approach which is based on a realistic physical model of the
flow, and which allows a prediction of the quantities at the
edge of the laminar sublayer, is cxpedient al the present
time,

2, Such an approach was originally devised by Prandtl
(refercnce d) and reccently extended teo compressible [lows

by Donaldson (reference e) The phycical model of a turbulent
boundary layer proposcd by .hese investigators may bLe briefly
described as follows: It is assumed that the turlulent
boundary layer velocity profile can be divided into two
regions; the wall udjacent region called the laminar sublayer,
where the velocity varies linearly with distance from the
surface, and the outer turiiulent portion, which is represcnted
Ly a power profile. The interscction of these two profiles is
defined as the edie of the laminar sui-layer,

3. It is the purposc of this investipation Lo extend and

revise the aralysis of Donaldson in order lo ol tain consistency
with the most recent and relialble experimental results for

low spred turbulent boundary layers. The applicability of this
analysis for compressible tur.ulent boundary layers with and
without steady state heat transfer is demonstrated ..y comparisons
with supersonic and hypersonic experimental resultis,

P
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ANALYSIS
¥e..ompressible Turbulent Boundary Layers

4. It hrs been established by numerous investigators that the
velocity yrotiilc in the outer turbulent portion of the boundary

layer may he adequately represented by a power profile of the
form

1
n § =y =68 (1)
L

while experimental evidence indicates that, in the laminar sub-

layer region, the velocity profile is essentially a straight
line

Yo ‘.5

u__ ..[r_]

U eXo o= =5 (2)
Ty X7 x constant y L

The boundary layer is thus divided into a turbulent portion
described by Eq. (1) and a laminar region having a linear ve-
locity profile (Eq. 2). This is shown in Figure 1 with the

real conditions in the transition region indicated by a dashed
line,

5. Several general relations for the local skin friction coef-
ficient can be deduced using the preceding postulates regarding
the boundary layer velocity profile together with various as-
sumptions regarding the shear stress at the edge of the laminar

sublayer., These relations necessarily embody unknown functions
which must be evaluated empirically.

6. Donaldson (reference e) introduced an cnpirical constant
relating the total shear stress and the laminar shcar stress
in order to compute the skin friction. Taking
7 ¥ Cpos
Lam}' furk. . r = constant (3)
Lam,
and evaluating r at y = GL from the power profile given by

Eq. (1), Donaldson (reference e) derived the following rela-
tion for the skin friction coefficient

l~n 2
cn-z[."_(.’.'_.;.z_l_)_]I'"[éR_;_]"II (4)
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| and evaluated the constant (r-1)/k2 empirically using Blasius'
! (refarence d) skin friciion law. In Donaldson's analysis, the
! velocity profile exponent (n) is considered constant, and the
{ Prandtl mixing length law

, {=-xy (5)
. . is arsumed in order to calculate the turbulent shear stress,
) r?urh.'

7. In the present report the velocity profile exponent (n) was
taken as a variable and the method by which Eq. (4) was correlated
with expeviment is zs foliows: First, Fq. (4) was equated to %he
Karmapn-Schoenherr incompressible skin friction law

cgj = 0.0568
|Tog,, (ZReg)] [Log,q (2Req) + 0.868) (6)

which is regarded as a good representation of incompressible
turbulent toundary layer skia friction cocfficients over a wide
Reynolds number range. This procedure yislded a variation of

n with Reg. A comparison was then made between experimental data
and the deduced variation of n with Reg. This approach seemed
logical becau~e the experimental variation of n with Reg is well

w—

* An examination of Figure 2 suggcsts that since the shear
stres= is nearly constant near the wall, an alternate assump-
tion regarding the relationship between the laminar and turbulent
shear stress may be made. Within the sublayer the laminar she.>
. stress predominates while outside the sublayer the turbulent
. . shear stress predominates, and since the transition region is
neglected in the model for the velocity profile, the values of
. Tpurp, calculated from Eq. (1) and 7 .~ calculated from Eq. (2)
may be taken as each equal to the totaT'she:r stress at y = 6,,

Thus a logical relationship between 7 y,.p, and Tpapm, wouild
appear to be

TUlurb., ® “Lam. 8t ¥y = &,

' it rTurb. and fian. are computed as indicated above, In
§ addition, if the von Xarman mixing length formula

S
L=r
dy2

s

is used instead of the Prandtl mixing length formula, each o.
the shear stress assumptions will lead to another skin f iction

! ; relation,.
1 X A study was therefore made to determine which of the as-

‘ sumptions and mixing length formula yielded a skin frictiun

! law which gave the best overall agreement between theory and

‘ experiment, It was found that Eq. (4) given by Donaldson,

could best be adapted to the experimental results., The details

\ of this analysis are contalned in Appendix A.
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described hy a largc amount of experimental velocity profile
data. It was found that using this procedure and taking E_:El
k

as constant resulted in a variation of n with Re, which is

a good average of the available experimental datg (references
c, £, €, and h). This is shown in Figure 3. The value of the
constant T - 1 compatible with the n variation with Reo shown

in Figure 3 is 20.0. Thic is only slightly different from the
valve of 22.5 given by Donaldson (reference e). Since in his
analysis the n variation with Reyuclds number was not corsidered
and the Blasius (reference d) skin friction law was uscd to ob-
tain the constant, it is to be expected that a slightly different
constznt would be obtained. The incompressible portion of the
present analysis therefore represents an extension of the Donaldson
analysis in that the n variation with Reynoclds number is con-
gldered.

Compressible Turbulent Boundary Layers

8. Siace for compressible flow, the temperature varies across
the boundary layer, it is apgarent that the assumpiion of con-
stant shear stress through the laminar sublayer violates the
stipulation that the velocity varies linearly with distance
from the surface, It is assumed that this incompatibility does
not introduce any serious errors in the skin frictic. results,
The subsequent comparisons between theory and experiment tend
to confirm this assumption,

9, The extension of the foregoing analysis to compressible
flows is straightlorward and the equations take the same form
a8 those given in reference(e). If the value of the constant r
obtained by the procedure described above is assumed to be the
same for both incompressible and compressible flows wath and
without heut transfer, then Eq. (4) is valid for these cases if
the density and viscosity contained in the Reynolds number are
evaluated at the edge of thke laminaxr sublayer, It is desirable,
however, that the Reynolds number be expressed in terms of free-
siream properties., This transformation is presented in reference
(e)and in Appendix B where it is shown that the resulting equa-
tions necessary to determine local skin friction coefficients
are ags follows:

> n - 20-1

1 - 2 B+ 1

cf'2[20n'1"—?'% [ ]n-H[:“’] (7)
| | Fee (3] L

T

...l.‘n Y-l u2 - “Lz T'—T. -ux‘

R i i e e Ch Y

-y

el

LY PP




— STy
PR

e am mvm—

L T,

> —

NAVORD Report 3854

\ 1.76
n+1l
14 rg, X2 2 j1-[ M) LTw-Te |3 O L
i z m[ (=) |+™rs™
a (9\

10. Values of n for use in these equations are obtained frowm
the curve of Figure 3, Using this single curve as a determining
factor for n implies that n is uniouely related to Rey, regard-
less of Mach number or heat transfer condition, Althgugh the

=

1]

results shown in Figure 3 terd to justify this postulate, probubly

the Mach number and heat transfer influences on n are concealed

by the insensitivity inherent in this coordinate system. A com-
parison between a plot of n versus Reg and n versus Regindicates
that some influence of kach mnumber ant heat transfer is probably
incorporated in both figures, but is appreciably less in the Re

plot., It is felt, therefore, that a more accurate determination
of n may be obtained when Reg is used as the correlating factor.

11. Since Reg was chosen as the correlating factor for n and

Eq. (7) requires the use of Reys, a means is therefore needed for
converting given values of Reg to the €quivalent Reg. The needed
6/8 values have been calculated using the definition for 6 witn
Eq. (1) and the Orccco temperature distribution (refercnce e) for
a series of Mach numbers up to 20, a wide range of heat transfer
conditions, and n values of 5, 7, 9, and 11, These are tabulated
in Table I, Also tabulated for the same range of variables are
the values of 6*/5 and H, It should be noted that the foregoing
procedure for calculating these pamameters ignores the laminar
sublayer because the power pwofile is assumed to exist to the
wall. While this procedure i not quite exact, it is felt that
ornly small errors will result because by far the largest contri-

butiong tc the integrals for §* and 6 occur outside the laminar
sublayer.

12, Using the present analysis, skin friction coefficients can
be calculated if the Reynolds number is given in terms of either
the total boundary layer thickness (Reg ) or the boundary layer
momentum thickness (Reg), or, £s8 will be shown later, in terms
of the distance from tﬁe leading edge. Since the dependence of
8/8 with Mach number and heat transfer is not consideired in
Donaldgon's (reference e) analysis, the skin friction coefficient
can be evaluated only if the value of Re, is known,

13, Yhether or not the postulated uniqueness of n with .e

leads to serious errors may be checked by comparing the 1n?1uence
of n on cg over a range of Mach numbers for a fixed value of

Reg. A value of Reg of 8000 was selected for the check proced ve,

T PR ar ey e vermram
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and the n value was vrried between 5.5 and 7.5 which euncompasses
the scatter of the experimentai data at this point. It was

found that the values of cg over & range 0f Mach numbers up to

10 were no more than 6 percent above ci below the curve drawn

for the value of = theoretically associated with an Reg of 8000.

On the basis of this check it wam concluded that the skin fric~
ion values obtnined from the present antlymis are not particularly
sensitlve to the value of n associated vithk the Reg in question.

14. This result enables the approximate calculation of the varia-
tion of cg/ceiy am a function of Rey., If ct/cey iw not particularly
sengitive to n, it may be assumed that for a given ¥ach number

aand heat transfer rate, the vaiue of 8/5 along a plate is constant.
This assumption is necessary to perform the integration indicated
in Appendix C. Using this assumption, a reiation betweer Re, and
Rex may be deduced, The details of this derivation are given in
Appendix C, where it is shown that the resulting equation im

n+ 1}
Rey = Pag BFS Y
n+1 n+ 1 . n-len-z.szi"Tl?'
B N B

It is not stipulated, however, that the value of (n) for ume
in esquation (10) is & comstant. Curves showing the variation
of cg/cei as a funct.on of Mach number for several cordtant
values of well temperature ratio and a constant value of Rey
of 107 (Pigure 15) calculated using the equations of Appendix
C are in good agreement with the empiricel curves of Selif?
(reference a). Results obtained using the c(quations of Appen-
dix C should therefore suffice for most engincoring applica-
tions.

15, The recent acquisition of detailed experimental data at
hypersonic Mach numbers at both the Naval Ordnance Laboratcry
and the Applied Physics Laboratory (references c and f),6 both
with and without steady state heat trznsfer, made it possible
to examine not only the overall results ot the theory but also
the validity of the assumptions made and the use of constants
drawn from incompressible flow results.

16. Tha firat step is to examine the conditions at the edge of
the lominar sublayer. This is necessary because the theory is
focused on this point, PFor incompressible flows it has long

been sssumed that the value of ui - yi at the edge of the lam~-
inar sublayer (ia the logarithmic velocity profile representation)
is roughly a constant that liex between I1,0 and 12.0. The
present analyzis is not based on this asaumpticn but im mo con-

structed that¢ a computation and check of the remults obtainad for
this point may be mmde.
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‘

17. The theoretical variation of uj, with Reg is compared with

experimental data (references i and i) for incompressible flow

in Pigure 4. It is appareut that the acceptcd presumption that
u£ - yz is a constant is not far from true; however, the theory
and expariment indicate that Reynolds number does influcnce the
value of up = yi, slightly.

lJ8. Pigure S5 shows a comparison between the theogeticgl and
experimental values (references c, f, and k) of uj, = yj, for

compressible flow, Yor lhis comparison all valucs of uL - Yy

are hasgsed on wall properties. The theoretical curves assocliated
with each set of experimental data were calculated such that
they encompassed the experimental Mach number and Reynolds
numbcr range. Although the present annlysis does not accurately

predict the numerical values of ui - y* it does predict the
proper trend cof the data for both the ke:ting and ccoling cases.,

19. In the formulation of this analysis, the incompressible
skin friction law of Karman-Schoenherr has been used as a basis
for the Zeiv beal trausfivr case, Unforiunately, littlie exper-
imental data are available which describe the influence of heat
transfer on incompressible skin friction coefficients. The
analysis can, however, be applied to this case and comparisons
made with the few data that are available. The experimental
results of reference (1), while not reportied in aufficient de-
tail tc make an exact computation using the present analysis,
may be used to show that it does predict qualitatively correct
results. Ir using these experimental data for this comparison
it is assumed that the ratio cg/c can be used interchangeably
with Cp/Cp; and that little Reynoiés number dependence on this
ratio exists. Pigure 6 shows both the predicted _.nd cxperimental
variation of ce¢/ceqy with wall temperature ratio for a constant
value of Reg which represented a mean Zor the data of reference
(). The results shown in this figure demonstrate that the pre-
sent analysis describes coivectly the variation of cg/ce; with
increasing wall temperature ratio. PFigure 7 shows the influence
of heat transfer parameter on the values of ct/cg; for several
values of Mach number and a single value of Reg. It is ap-
parent that cooling of the surface results in an increase in
the skin frictica coefficient, whereas heating has the opposite
effect, That this result is consistent with the incompressible
results shown in Figure 6 is evident from the results shown in
Figure 8. This figure shows the variation cf cgf/cgey with Mach
number for several constant values of Ty/Ton . The curves of

constant Ty/Te intercept the zero heat transfer curve at only
one point. Each intercept occurs at the Mach number where ’
Tw/Tso = Te/Tep . A curve of the same appearance has Leen de~
duced by Seiff (refercnce m) from an empirical correlation of
experimental data for Mach numbers up to about 5, A direct
comparison hetween the rosults presented in Figure 8 and those
reported in reference(m) is not valid becsuse the curves of
Figure 8 were computed for constant ch and depend somewhat on
this Reynolds numlber, whereas those of reference(m) are ag-

Bumed to bLe iudopendent of Reynolds number based an dj .
fronm the leading edgo. y i tance

R R A S e 0t ST )
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20. A comparison between specific values of experimental skin
friction coefficients and the associated values predicted by
the present analysis is shown in the following three figures,
Figure 9 shows the variation of cg/cgj with Mach number for
zero heat tranusfer. All of the experimental data (references
a, b, ¢, £, k, n, o, and p) shown were normalized to a constant
Neg of S0U0 and are either specifically for the case of zero
heat transfer or were linearly extrapolated to the zero hesat
transfer condition. The scheme used for proccasing the heat
transfer results is outlined in reference (c). Good agree-
ment between theory and experirment is found for the entire
range of Mach numbers for which experiwental data sre aveilable.
Figures 10 and 11 mhow coeparistons between theoretical and ex-
perimental values of cg/ceq plotted as a function of heat
transfer parameter for those experimental data taken under con-
ditions of steady state heat transfer (references c, f, and k).
For each of the sets of data shown, the variation of Reynolds
number with heat transfer rate, if any, was considered in the
theoretical calculations, It is significant to note that the
results shown for the data of reference (c) indicate liiile
variation of skin friction ratio with increasing heat transfer.
From the present analysis it appears that the increase in
Reynolds number, which accompanied the increase in heat trans-
fer rate, so influenced the results as to obviate any increase
in skin friction ratio. In general, the agreement between

theory and experiment is gatisfactory for each of the sets of
data shown,

CONCLUDING REMARKS

21. A theoretical investigation of compressible turbuient
boundary layers with heat transfer has been c¢nnducted. This
investigation is based on u simple flow model which is realistic
for both the zero heat transfer and heat transfer conditions.
The validity of the flow model a..vrumed is demonstrated by com-
parisons between theuretical and experimental results. The
theory is presented in such a fashion that values of gkin fric-
tion may be calculated when either the Reynolds number based

on boundary layer momentum thickness, total boundary layer
thickness, or distance from the leading edge is given., Good
agreement is demconstrated between theoretical and experimental
va.lues of skin friction coefficients, for both the zero and
heat transfer conditions. It is shown that the predicted
influence of heat transfer and Reynolds number on the proper-
ties at the edge of the laminar sublayer is consistent with

the avajilable experimental data for both incompressible and
compressible flows, It is anticipated that, with the acquisi-
tion of additional data covering a broader range of conditions,

improvements will be made in hoth the functional nature and
sccuracy of the analysnis.
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APPENDIX A

General Relations for the lLocal
Skin Friction Coefficient

1. The equation of motion to be satlsfied by a boundary
layer flowing on a flat plate in the absence of a pressure

gradientl is:

du dy 1d¢¥ 1 d du 4,02 (du 2 (
u 84 - 8t = 2 == Al)
Flay = fay " p dy [l“dy*f (5)

The total shear stress at any point in the boundary layer is

- du 2 d 2
.+ 2 A i (aﬁ) (A2)

Tam, Turb.

Donaldson (reference e) assumed that the ratio of the total
stress to the laminar stress at the edge of the laminar sub-
layer is a constant,

TLam. + r'l‘urb .

= r = consitant at y =~ 8 (A3)
z?am.

Using this assumption, and evaluating Eq. A2 at y = §; by
using,

1l -n
T
du - “a>8L
dy ';"EI7h (Ad)

which is obtained from the power profile (Eq. 1), it can be
shown that the thickness ratio of the laminar sublayer is
n

oy B+ T
6, |n(r-1) & (A5)

5 22 Reg ]
2. It may also be logically assumed that at y - §;, the
laminar shear stress is equal to the turbulent shear stress

Iw = T

un. 'Purb. at y - SL

Evaluating Up .y using Eq. 1 and Zlnm using Eq. 2 yields the
following exnression for the thickness ratio of the laminar

11
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subhlayer

n

I =n

5 12

2
§, [n?5 ‘1_]
5 Reg

(AG)

Equations (A5) and (AG) necessarily contain the so far un-
determined mixing length "{" for which either the Prandtl

mixing length law

L=k y

or the von Karman mixing length law

gg
y
- k

I-*
.2

a
J

2

may be used.

(A7)

(A8)

3. It is evident therefore, that the assumptions used to
obtain equations (A5) and (A6) together with the mixing length
laws given in equations (A7) and (AB) will yield four equa-
tlons for the thickness ratic of the laminar sublayer. These

are tabulated helow:

Assumption

Mixing length

lnw

Laminar
sublayer thick-
ness ratio

Equation (AS) Prandtl s
(Eq. A7) 5y [ n(r-1) | 04T
6 l_kz R06 .
n 2n
von Karman e | n+1l
(Eq. A8) §;, |n(r-1) 1-a
& ,k2 Reg n
Equation (A6) Prandtl n
(Eq. A7) 6, [ n2 n+1
5 | he ]
n 2n
von Xarmasn Y § n+l
(Rg. AB) 6§, | 02 TP [1en
s K 2 Re, n
) 12
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The local skin friction coefficient for incompressible flow
may be calculated using the substitutions

T, = uy,
z’L
1
uL /Bx‘ )n
L. S Ry
and
2Ty
Cg = 2
Po Vo
together with each of the equations for the laminar sublayer
thickness ratio., These are tabulated below.
Assumption Mixing length Local skin friction coefficient
law law
[~ 1n=n 2
Equation (AS) l(’::and:;) . - n(r-1) Tl 1 -[;—rl (A-g)
& i kT Reg
von Karman| %:2 2 2(1-n)
(Eq. A8) 3 U BT LR Y DR QU
gy ~ 2|R{r-1) 1-n
| k2 Reg, n (A10)
1-.'1 2
Equation (A6) Prandtl hz'rj:“ '1 Ta+1
(Eq. A7) * 2 —_ (A1l
4 cfi ;2 'Rea )
1-n 2 2(1-n)
von Karman r 513 kD nily 19 n
(Eq. A8) |opy = 2|22 1 1-n
k2 Reg n (A12)
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APPENDIX B

Derivation of Local Skin Friction Coefficient
Law for Compressible Turbulent
Bourdary Layers

1. It has been shown that equation (4) was the most suitahle
for incompressible turhulent boundary layers. This law is
given as l-n 2

.

“ 4k n
cf, - 2[20:1] [__1__
Reg

To extend this relaticn to compressible flows the property

values (density and viscosity) need be evaluated at the edge

of Lhe laminar sublayer. FEquation (4) may be written in the

form

nrl
(4)

1-n 2. 2
1+n n+1l an ol
Tw 2 Mo | it A (B1)
oig "2 7. -
/’m of mumﬂ v a '
using the following substitutions
L Tw
o TL
and
o
Mu |y
/‘0 Tco
in equation (Bl), yields the following relationship:
i-n 2 n-2uw-1
L 2 [20n 10-n__1_n»~1 Tm n 1
Reg TL (B2)
2. To evaluate Too it will be assumed that the Crocco
quadratic form for the temperature distribution given as
- . 2
T-A}-B[“ ];-cu (B3)
U Yo

is valid By evaluating equation (B3) with the ususl boundary
conditions, the following equation regults
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T, Tw [Ty - Tllun] [Te - Tow)url]?
To" To | TTe i) | TTe ||t (54)

3. Equation (B4) may also he written as

TL x-l 2 uL 2 T' - Te “L

— - 1P, —~— M 1 -(—a) - — B5

Te 14+ r.f o @ [ m 4 Teg T (BS)
with the velocity ratio at the edre of the laminar sublayer
given ag

1
1 2
u 2 u T, -T, uy
Lo |20 14 r,f, ¥-1x [1-_1‘ reh ok
@® + u

U Reg 2 l U Tay @©

q, For all calculations using equations (B2), (B5) and (B6)
W has been taken as 0.76 and the value of r.f. as 0.896.
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APPENDIX C

Derivation of Local and Average Skin Friction
Coefficient Laws Based on Re,

1. For incompressible flow the momentum equation for the
boundary laver in the absence of a pressure gradient is

de _ 1

dx 2 (C1)
or

dReg  ff

- (c2)
dRex

The following relation results when the right hand side
of equation (4) is inserted into equation (C2);

T len 2 2
dRe 1+nf 1 Jned l
8 laonftt® E—--J 2 J ntloes)
dRey €g (n+1){n+2)

and the substitution 8§ _ (n+1)(n4+2) js used.
e n

Equation (C3) can be integrated by assuming that n is
a constant along a given plate (or © is constrnt). Whether

or not this is a valid assumption W§11 be verified by a com-
parison between the von Karman incosyressible mean skin fric-
tion law and the derived relationship. Integrating equation
(C3) yields

n43 2-1 T
n+l n+3 11 |n+l n T Rex
(Reg) "1 |20n (1 1) (n+2)
and since
Cry Reg
—-2_— Rex (C‘))

equation (C4) can be manipulated to yield

16
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2
n-1 2 n+3 <

=== nt3
n¢+l

¢ n+l .
“Fi Moy 3] 2 [ n__ | -
2 n+ IJ 20n !.(“ +1)(n +2) J Rey (C6)

A comparison between the values of Cpy obtained from
equation (C6) (using the n values associated with the Reg
values of figure 3 and equation (Cd)) and the values of Cpy

from the von Karman mean skin friction equation for incom-
pressible flow

0.242
= Logyq [CH Rex:] (c7)

‘z"
g
[

indicated that over the Reynolds number (Rey) range from

0.5 x 105 to 60 x 10% the agreement between Cp; values ism
within 4 percent. This result means that at least for
incompressible flow the assumption that n is a constant

along a plate can only lead to small errors in the estima-
tion of skin friction values,

Using this information, the incompressible law for
local skin friciion cocfficients on 1 Rey basis may then be

derived, The momontum equation can be written as

a5 _ 8
ax ~ 36 Ft (c8)

ﬁubstituting equation (4) yields
l-n 2

2
a8 _ s [0 IT+rn[ 1 J]0+1 n nal
CERL N e Reg (n +1)(a +2) (€9)

which mav be integrated to yield the following relation

n+1 n~1 2

Reg  fn+3 ls) AR ERCE Y
ch- n+1l ‘—6 ' 20n E;\_-;

K]
2t (C10)

By inserting equation (CiO) into equation (C3) the following
local skin friction law results

17
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n-l 2 2
c n+3 243 3
11, L1 [0) 1
5 = | 5re - — (C11)
!20“ LI-FS (5) Rexl
or
n-1 2 2
p - rl+3 n .¢ 3 - an 3 .
_f}_.l_.__.'l ] [ n ] l-—-l ] (c12)
2 20n (n+2)(n +3) . Rex
2, For compressible flow the extension of the foregoing

expressions for the mean and local skin friction ccefficients
to compressible flows necessitates the use of an additional
approximation the accuracy of which is checked with the
available expe:iimental data.

The local skin friction law (equation B2)

p-1 2 n- 2.52
. . ntl . n+1
Lr 1 1
2 "|20n Re,

n+l

embodies tl.e term (Tbo) which cannot be¢ a predetermined
TL

constant because it depends on Reynolds number as ... be seen

ii. the following equatiorns:

To (2)

TL

T u 2 T To [ u |
L - 1y, w - le
ekt Bl -2} |- 2] ()
@ U ® Yoo
where . 1 1.76
n 4 1 n +1 (86)
iy ] or
Y loon Ty, (C14)
Uon '_neb .Tm

T
However, if _® is sssumed to be a constant that is as=-
T
L

gociated with an average valuc of Reynolds number, the results
that are obtained may be of sufficient accuracy for most
applications. This ie a logical step becausce for a given Mach
number and heat transfer rate U, is not seriously dependont

e

uwm

[
&)




S e T

o — it

NAVORD Report 3854

on Re, or Rex. Using this assumption, the following relations
may be derived from an integration of equation (B2).

r )}
-+l n -1 - ~2.52 o| N+ J
Cr Jfasa 3 012 [T 177252 ) 12
2 nil 20n 3 '.l'.'L_ }{‘é‘; (C15)
and
n+1l 1
4O F3 n4l n+l n -1 n-2.52| n+3
Re, = | Re é) (n+3) (___1__) (;.‘2)
. [ xJ (9 n+1l 20n L

(Cl1s)
vhere Rex is given by
Rex = } Rey (maximum)

To determine local skin friction coeificients with the
knowlege of only values of Rex it 1s necessary to have avail-
able the variation of n with Rex and Re; for use in equation
(C16). A cslculation of the variation of n with Rey and Reg
has been carried out for the zero heat transfer case and the
results are plotted in figures 12 and 13 respectivel,. These
calculations were made using the results tabulated in Table I,
figure 3, and equations (C13) and Cl4). Curves similar to
those shown in figures 12 and 13 may be prepared for different '
heat transfer rates by the same method,

Using the dota plotted in figures .2 and 13 the procedure
for calculating €f as a funntion of Reyx is as follows:

1, Determine the maximum value of Rex to be encounted for
a given problem. The seluction of this value determines n,
Reg, and Rey.

T
2. Solve equation (Cls) for 9O,
q ( ) fo T

3. Insert the values of TOD, n, and Re, in equation (B2)
and solve for Cyg. Ty, ’ '

By a similar procedure equation 7Cl5) may be used to
calculate 2ean skin friction coefficients,

As a check on the approximate nanalysis described zbovc,
the variation of ¢ /°f1 with Mach number has been carried out
for three values oi Rex sufficient to encompass the Reyx range
of the availahje experimental data. Figure 14 shows the

19
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results of these calculations compared to the available ex-
perimental data. The good agreement between theory and ox-
periment tends to juslify the approximations made in the
preceding analysis.

Figure 15 shows the variation of the skin friction ratio
with Mach number ror a number of constant values of wall to
frec stream temperature ratio and a constant value of Rex of
107. The similarity between curves of this figure and the
results plotted in figure 8 is apparent. However, differences
in the curve shapes and corresponding values of the skin
friction ratlio can be seen by careful examination.
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TABLE I (CONTINUED)
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